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ABSTRACT
In this paper we present BeeAdHoc, a new routing algorithm
for energy efficient routing in mobile ad hoc networks. The
algorithm is inspired by the foraging principles of honey
bees. The algorithm mainly utilizes two types of agents,
scouts and foragers, for doing routing in mobile ad hoc net-
works. BeeAdHoc is a reactive source routing algorithm and
it consumes less energy as compared to existing state-of-the-
art routing algorithms because it utilizes less control packets
to do routing. The results of our extensive simulation ex-
periments show that BeeAdHoc consumes significantly less
energy as compared to DSR, AODV, and DSDV, which
are state-of-the-art routing algorithms, without making any
compromise on traditional performance metrics (packet de-
livery ratio, delay and throughput).

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: [Distributed
networks, Wireless communication]; C.2.2 [Network Pro-
tocols]: [Protocol architecture, Routing protocols]

General Terms
Algorithms, Design, Theory

Keywords
Swarm Intelligence, Mobile Ad Hoc Networks, Self-Organization,
Energy Efficient Routing

1. INTRODUCTION
Mobile Ad Hoc Networks (MANETs) is becoming an ac-

tive area of research [13]. All nodes in such networks take
two roles: producer/consumer of data packet streams, and
routers for data packets destined for the other nodes. The
most important challenges in MANETs are: mobility and
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limited battery capacity of the nodes. Mobility of nodes re-
sults in continuously evolving new topologies and the rout-
ing algorithms have to adapt the routes according to these
changes. The limited battery capacity poses yet another
challenge for the routing algorithms: to distribute the pack-
ets on multiple paths in such a manner that the battery of
different nodes deplete at an equal rate, as a result, the life
time of the network could be increased [16] [8]. The metrics
for energy efficient routing are also introduced in [8] and it is
evident that an energy aware routing algorithm is expected
to degrade the traditional performance metrics of a routing
algorithm i.e. throughput and packet delay [11]. The real
dilemma in MANETs is: how to to design a routing algo-
rithm which is not only energy efficient but also provides the
same performance as that of the existing state-of-the-art al-
gorithms.
The routing algorithms for MANETs can be broadly classi-
fied as proactive algorithms or reactive algorithms. Proac-
tive algorithms periodically launch control packets which
collect the new network state and update the routing ta-
bles accordingly. On the other hand, reactive algorithms
find routes on-demand only. Reactive algorithms look more
promising from the perspective of energy consumption in
MANETs. Each category of the above-mentioned algorithms
is further classified based on the routing scheme as source
routing or next hop routing algorithms. In source routing
algorithms, the complete route to a destination, which con-
sists of a sequence of nodes leading to the destination, is
added as a header to each data packet. In next hop rout-
ing a packet is forwarded to a neighbor node, based on the
information in the routing table, lying on the route leading
toward the destination.
DSR (Dynamic Source Routing) is a reactive source routing
algorithm [7] while AODV (Ad-Hoc On-demand Distance
Vector Routing) is a reactive next hop routing algorithm [9].
DSDV (Dynamic Destination-Sequenced Distance-Vector) is
a proactive next hop routing algorithm [10]. AODV and
DSR are considered to be state-of-the-art routing algorithms
developed by the networking community for MANETs. How-
ever, all of these algorithms are not designed for energy effi-
cient routing. Feeney reported in [4] the energy consumption
behavior of DSR and AODV and concluded that the algo-
rithms are not optimized for energy consumption. She be-
lieves that metrics for energy efficient routing are completely
different than traditional performance metrics (packet deliv-
ery ratio and packet delay). The energy aware algorithms
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reported in [16] [8] also use DSR or AODV as an underlying
route discovery and maintenance mechanism, and then use
energy as a cost metric for routing. To our knowledge, lit-
tle attention has been paid in developing an energy efficient
routing algorithm from scratch with one primary objective:
optimizing energy consumption without any degradation of
the performance.
In this paper we present a new MANET routing algorithm,
BeeAdHoc, which is primarily designed for energy efficient
routing. The algorithm proposes a solution to the energy-
performance dilemma. BeeAdHoc achieves similar/better
performance as that of DSR, AODV, DSDV but consumes
significantly less energy as compared to these state-of-the-
art algorithms. The algorithm achieves the objectives by
sending less control packets and distributing data packets
on multiple paths. Such a behavior is made possible by tak-
ing inspirations from the foraging behavior of honey bees
which is discussed in [17][15].

1.1 Related Work
The first algorithm which presented a detailed scheme for

MANET routing based on ant colony principles is ARA [6].
The algorithm has its roots in ABC [14] and AntNet [2]
routing algorithms for fixed networks, which are inspired by
the pheromone laying behavior of ant colonies. The algo-
rithm floods ants to the destinations while establishing re-
verse links to the source nodes of the ants. Nodes launch ant
agents in a reactive manner in order to limit the overhead
caused by them. AntHocNet has been recently proposed in
[3] which is a hybrid algorithm having both reactive and
proactive components. The algorithm tries to keep most of
the features of the original AntNet and shows promising re-
sults in the simulation tests over AODV. Termite is another
MANET routing algorithm inspired from termite behavior
[12]. In this algorithm, no special agents are needed for
updating the routing tables rather data packets are dele-
gated this task. Each data packet follows the pheromone
for its destination and leaves the pheromone for its source.
Pheromone is a quality metric representing the goodness of
a link. The data packets are biased toward the paths that
have higher pheromone values. An exponential pheromone
decay is introduced as a mean of a negative feedback to pre-
vent old routes from remaining in the routing tables.
Recently, Wedde, Farooq and Zhang have proposed a novel
routing algorithm for fixed networks which is inspired by for-
aging principles of honey bees [18]. The algorithm is simple
but delivers the same/better performance as that of AntNet
[2]. The success of BeeHive motivated us to take the forag-
ing principles of bees as an inspiration for designing our new
routing algorithm, BeeAdHoc, for MANETs. A honey bee
colony has many features that are desirable in MANETs: ef-
ficient allocation of foraging force to multiple food sources,
different type of foragers for each commodity, foragers eval-
uate the quality of visited food sources and then recruit op-
timum number of foragers for their food source by dancing
on a dance floor inside the hive, no central control, foragers
try to optimize the energetic efficiency of nectar collection
and foragers take decisions without any global knowledge of
the environment. The principles discussed in [17] [15] form
the basis for our BeeAdHoc algorithm. We skip the details
for the sake of brevity.
The rest of the paper is organized as follows. In Section 2
we will introduce our bee agent model and on its basis we

will describe our routing algorithm, BeeAdHoc, in Section 3.
We will first explain the complete experimental framework
in Section 4 and then discuss the results obtained from the
extensive simulations. Finally, we conclude the paper with
an outlook to our future research.

2. BEE AGENT MODEL
Our Bee Agent Model is inspired from the foraging princi-

ples of a honey bee colony. Our agent model consists of four
types of agents: packers, scouts, foragers, and swarms. In
the rest of the paper we use the term scout for scout agent,
forager for forager agent etc. until otherwise specified.

2.1 Packers
Packers mimic the task of a food-storer bee. They always

reside inside the node, receive and store the data packets
from the transport layer. Their major job is to find a forager
for their data packet and they die once they hand over it to
the foragers.

2.2 Scouts
Scouts discover new routes from their launching node to

their destination node. A scout is transmitted using the
broadcasting principle to all the neighbors of a node with
an expanding time to live timer (TTL), which controls the
number of times a scout could be re-broadcasted. Each scout
is uniquely identified with a key based on its id and source
node. Once a scout reaches at the destination then it starts
the backward journey on the same route that it followed
to the destination. A destination node sends back all of
the received scouts to ensure discovery of multiple paths.
Once a scout returns to its source node then it recruits the
foragers for its route by using the metaphor of dance (as
scout bees do in Nature). A dance is abstracted as the
number of clones that could be made of a scout (equivalent
of recruiting forager bees in Nature).

2.3 Foragers
Foragers are the main workers in our BeeAdHoc algorithm.

They receive the data packets from packers and then trans-
port them to their destination. Each forager has a special
type: delay or lifetime. The delay foragers collect the delay
information from the network while the lifetime foragers col-
lect the remaining battery capacity of the nodes that they
visit. The first ones try to route packets along a path that
has a minimum delay while the second ones try to route
packets in such a manner that the life time of the network
is increased.
A forager gets the complete route, in the form of a sequence
of nodes leading to a destination, from a scout or another
forager. A forager follows point-to-point mode of transmis-
sion till the destination and collects the information about
the network state depending upon its type. Once a for-
ager reaches at the destination then it remains there until it
could be piggybacked on the network traffic from the desti-
nation node to its source node. This optimization reduces
the overhead of control packets and hence saves energy as
well. A reliable transport protocol, like TCP, acknowledges
the received packets and BeeAdHoc piggybacks in the ac-
knowledgments the waiting foragers. The foragers also use
the metaphor of dance once they return to their source node
in a similar way as scouts do.
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2.4 Swarms
An unreliable transport protocol, like UDP, sends no ex-

plicit acknowledgments for the received data packets. Such
a protocol may not be able to provide an implicit return
path to a waiting forager and therefore it could never return
to its source node. Consequently, its source node might run
out of the foragers and unable to continue the communica-
tion. We solved this problem with the help of swarms. Once
the difference between the incoming foragers from a certain
node i and the outgoing foragers to the same node i reaches
above a threshold value at a node j then the node j launches
a swarm of foragers to the node i. We put one forager in the
header of the swarm while the others are put in the payload
part of the swarm. Once the swarm arrives at the node i
then the foragers are extracted from the payload part and
they are stored like they would have arrived at the node in
a normal fashion.

3. ARCHITECTURE OF BEEADHOC
Each node in MANET has a hive, which consists of three

parts: packing floor, entrance and dance floor. The struc-
ture of the hive is shown in Figure 1. The entrance is an in-
terface to MAC (Medium Access Control) layer while pack-
ing floor is an interface to transport layer. All packets de-
part/enter the hive through the entrance. The dance floor
contains the foragers (routing information) for routing of
data packets originated at the node.

BeeHive

packing floor

entrance

dance floor

application layers (TCP, UDP, etc.)

network layers (MAC, i.e. IEEE 802.11)  

Figure 1: Overview of the BeeAdHoc architecture

3.1 Packing Floor
The packing floor is an interface to higher level transport

layer like TCP or UDP. Once a data packet arrives from
the transport layer, a packer is created in the packing floor
which stores the data packet. After that the packer tries
to locate a suitable forager for the data packet from dance
floor. If it finds one then it hand overs the data packet to
the forager and dies. Otherwise, it waits for a time (may be
a returning forager is on its way toward the current hive)
and if no forager arrives within this time, then it launches a
scout which is responsible for discovering new routes to the
destination of the data packet. Figure 2 explains the series
of actions performed at a packing floor.

3.2 Entrance
The functions performed in entrance are shown in Fig-

ure 3. The entrance is an interface to lower level MAC
layer. The entrance handles all incoming/outgoing packets.
A scout received at the entrance is broadcasted further if
its time to live (TTL) timer has not expired or if it has not

BeeHive

application layers (TCP, UDP, etc.)

entrance

packing floor

send

entrance::letOut receive

TCP, UDP::receive

send buffer

set TTL, ID

set timer

add to buffer

get forager

hand data

create scout

hand data

no forager

create packer

danceFloor::getForager

forager availbale

timer expired,
scout not returned

forager

danceFloor::addScout

danceFloor::addForager

    scout

packer
      in buffer

waitingPackers

 

Figure 2: The packing floor

arrived at the destination. The information about the id of
the scout and its source node is stored in a table. If another
replica of an already received scout arrives at an entrance of
a hive then the new replica is killed here. If a forager with
a same destination as that of the scout already exists in the
dance floor then the route to the destination is given to the
scout by appending the route in the forager to its current
route.
If the current node is the destination of a forager then it is
forwarded to the packing floor else it is directly forwarded
to the MAC interface of the next hop node.

3.3 The Dance Floor
The dance floor is the heart of the hive because it takes

important routing decisions. Once a forager returns after
its journey it recruits new foragers by dancing according to
the quality of path that it traversed. However, the quality
metric for each forager is different. As mentioned before,
a lifetime forager evaluates the quality of its route based
on the average remaining battery capacity of the nodes on
its route. A lifetime forager might allow itself to be cloned
many times (forager bees in Nature dance enthusiastically
and consequently recruit more foragers) in two scenarios:
one, the nodes on the route have enough remaining battery
capacity (good route), two, if large number of packers are
waiting for it even though its route might be having nodes
with little battery capacity. In second case, it is sensible
to send the packets through less good routes as well. On
the other hand, if none of the packers are waiting then a
forager with a very good route might not dance because its
colleagues are doing a nice job in transporting the data pack-
ets. This concept is directly borrowed from the behavior of
scout/forager bees in Nature, and it helps in regulating the
number of foragers for each route.
The dance floor also sends a matching forager to the packing
floor in response to a request from a packer. The foragers
whose life time has expired are not considered in the match-
ing function. If multiple foragers match the criteria then a
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BeeHive

packing floor

network layers (MAC, i.e. IEEE 802.11)

entrance

letOut

MAC::send letIn

packing floor::receive

updateInfo
         forager

forward scout

      returning

still scouting

insert address

decrease TTL

scout

broadcast

reverse route

home again

                      TTL not expired

deleteScout

                       TTL expired

       on way home
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updateNextHop

    on way
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              forager

      not in list

in seenScoutList

to seenScoutList

route completing

route isn’t complete

                                                        route complete

 

Figure 3: The entrance

forager is stochastically chosen among them. This helps in
distributing the packets over multiple paths that serves two
purposes: avoid congestion under high loads and battery of
different nodes are depleted at an equal rate. A clone of the
selected forager is sent to the packing floor and the original
forager is stored in the dance floor after reducing its dance
number. If the dance number is zero then the original for-
ager is sent to the packing floor and its entry is deleted from
the dance floor. Using the above-mentioned principle, young
foragers, which represent latest routes and which are likely
to remain valid in future, are favored over the older ones.
If the last forager for a destination leaves a hive then the hive
does not have a route to the destination. We believe that if
a route to the destination exists then soon a forager would
be returning toward the hive and if no forager comes within
a certain time then the node has probably lost route to the
destination node. This mechanism eliminates the need for
explicitly monitoring the validity of the routes by using spe-
cial hello packets and then informing other nodes through
Route Error Messages (RERR). This results in transmitting
less control packets, as a result, the algorithm has less en-
ergy expenditure. Figure 4 explains in detail the actions
taken at a dance floor.

4. SIMULATION FRAMEWORK
We evaluated the performance of our algorithm BeeAd-

Hoc using mobility enhancements made to ns-2 simulator
by the authors of [1]. The authors also evaluated the per-
formance of different state-of-the-art algorithms like AODV,
DSR, DSDV and TORA in their work. Our test scenarios
are derived from the base scenario used in [1]. We use the
same implementations of DSR, AODV and DSDV, which are
distributed with the ns-2 simulator to factor out any imple-
mentation related error in the algorithms.
The scenario consists of 50 nodes which are moving in a
rectangular area of 2400× 800m2. The rectangular area en-
sures that longer paths exist between the nodes as compared

BeeHive

packing floor

dance floor

add/getForager return to packingFloor

dances left

calculate dances

dancetime not elapsed

dancetime elapsed                                                       

lifetime not elapsed

chose random

delete forager
lifetime
elapsed  

add to foragerList

create destNode

get

foragers availble

create convertBee

                 forager

scout

return forager

no dances left                                                                                        

no foragers available                   

add

destListNode not
available

destListNode        
available

no destListNode
available

return NULL

destListNode
available

copy forager

remove forager

 

Figure 4: The dance floor

to a square one provided the node density (nodes per unit
area) remain the same. The nodes move according to the
”random waypoint” model [7]: each node randomly selects
a destination point and then moves to that point with a cer-
tain randomly selected speed. Once the node arrives at the
destination point then it stops there for a certain pause time
and then again randomly selects a new destination point and
moves toward it with a new speed. The speed is selected
from a uniform distribution between a minimum speed of 1
m/s (walking speed) and the maximum speed of 20 m/s (car
speed within cities). All the nodes generate a constant bit
rate (CBR) peer-to-peer data traffic with x packets/s. The
size of a data packet is kept constant at 512 bits. We use the
same models of physical and MAC layers as the authors of
[1] did. The reported results are an average over five inde-
pendent different runs to factor out any stochastic elements
in the environment or in the algorithms. The simulation
time for the algorithms is set to 1000 seconds.

4.1 Metrics
We now define the metrics which we used in the compar-

ison of the algorithms.

• Energy per user data. The total energy consumed,
including the energy consumed by the control packets,
to transport one kilobyte of data to its destination.
This metric is minimum when the same number of
bytes could be delivered at the destinations in less hops
and with small number of control packets. We used the
model presented in [5] to estimate the send/receive en-
ergy of broadcasting or point-to-point mode of trans-
mitting packets. This metric is also referred to as en-
ergy expenditure in rest of the paper.

• Success rate. The ratio between the number of pack-
ets successfully received by the application layer of a
destination node and the number of packets originated
at the application layer of each node for that desti-
nation. This parameter is also referred to as packet
delivery ratio in rest of the paper.
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• Delay. The difference between the time once the packet
is received by the application layer of a destination
node and the time when the packet was originated at
the application layer of a source node. This definition
takes care of the time that a packet has to wait at
the source node while the route to its destination is to
be found (reactive wait time). We always report the
100th percentile of the delays distribution because it
provides an insight on the spread of the delays which is
an important criterion for quality of service (QoS) ap-
plications, in which all packets should arrive at the des-
tination within an acceptable variance from the mean.

• Throughput. If y number of bits are delivered within
t time at a node then the throughput at the node could
be defined as y

t
. This definition assigns a higher through-

put value to an algorithm that delivers the same num-
ber of y bits in a smaller time. This definition of
throughput implicitly strikes a good balance between
the number of packets delivered at a node and their
delays.

• Network life. The average remaining battery capacity
of the nodes. A higher value means less depletion of
the batteries and hence is a desirable property of any
routing algorithm.

4.2 Node Mobility Behavior
The purpose of the experiments was to study the behavior

of the algorithms by varying the speed of the nodes. Higher
speeds reduce the stability of a network topology, as a result,
an algorithm has to adapt itself with the changes in topolo-
gies. In these experiments the packet rate was 10 packets/s
(CBR source) and the pause time was 60 seconds. Figure 5
shows the effect of mobility on different metrics. The packet
delivery ratio (see Figure 5(a)) reduces with the increasing
speed but BeeAdHoc is able to deliver approximately the
same number of packets as that of DSR, the best performing
algorithm. However, BeeAdHoc has a significantly smaller
delay (see Figure 5(b)). Consequently, BeeAdHoc is able to
maintain higher throughput (see Figure 5(c)) as compared
to all other algorithms. Please remember that our definition
of throughput favors one algorithm over the others if it is
able to deliver the same number of packets but with smaller
delays.
We investigated the problem of higher packet delays of DSR
by looking at 80th, 90th, 95th and 100th percentile of the
delays distribution (see Table 1). It is evident from Table

BeeAdHoc DSR AODV DSDV
80th percentile 105.64 167.73 156.85 117.89
90th percentile 153.84 278.58 220.52 176.01
95th percentile 191.36 396.29 269.31 223.76
100th percentile 280.97 969.39 387.96 372.55

Table 1: Different Percentile of the delays distribu-
tion for node speed of 1-5 m/s

1 that BeeAdHoc is able to deliver majority of the pack-
ets with in an acceptable deviation from mean while DSR
delivers about 5% of packets with quite large delays, as a
result, 100th percentile of the delays distribution is signifi-
cantly larger than that of the other algorithms. We further

looked into this problem and it appeared that the most im-
portant contributor for higher delay is the packet salvaging
technique used in DSR. Once a node finds out that the next
hop in the header is down then it looks at its routing ta-
ble and if it finds a route to the destination in it then it
replaces the remaining part of the header with this route.
However, by the time, the packet arrives at the next node,
the route again needs to be repaired. Consequently, a packet
keeps on taking hops until it arrives at the destination. The
basic behavior of MANETs could then be summarized as
follows: if a node finds that the next hop to a destination is
no more available then it should not try to repair the route
with the old information in its routing table because there is
a high probability that this old route would be no more valid
as well. Therefore, BeeAdHoc simply deletes the packet if
it finds that the next hop is down. It is clear from Figure
5(a) that this simple approach results, at maximum, in loss
of about 0.3% in packet delivery ratio.
The simplicity of BeeAdHoc, which results because of its
simpler architecture and using smaller number of control
packets (see Table 2, please note that all of the 50 nodes are
transmitting packets), pays off once we look at its energy
expenditure (see Figure 5(d)) in transporting the packets
from their source to their destination. BeeAdHoc employs a
simple bee behavior to monitor the validity of the routes by
controlling the number of foragers, their dance and age pa-
rameter, rather than explicitly using hello/RERR messages.
This results in the smallest amount of energy expenditure
for BeeAdHoc (see Figure 5(d)).
Finally, Table 3 shows the average remaining battery ca-

Node Mobility BeeAdHoc DSR AODV DSDV
1-5 m/s 83095 122313 592454 165454
1-10 m/s 93895 224335 716235 211220
1-15 m/s 99240 310119 836058 240234
1-20 m/s 103119 396885 731279 253000

Table 2: Total number of control packets sent

pacity (%) of the nodes in the network at the end of the
above-mentioned simulations. BeeAdHoc has higher remain-
ing battery capacity under all of the circumstances. The bat-
tery level of BeeAdHoc is better because it tries to spread the
data packets over different routes rather than always send-
ing them on the best routes. Different routes could be estab-
lished to the destination nodes at higher node speeds, as a
result, data packets are routed through different nodes and
this explains the increasing network life behavior of BeeAd-
Hoc, with an increase in the speed of the nodes. AODV and
DSR utilize significantly larger number of control packets at
higher nodes speed (see Table 2) therefore the batteries of
the nodes are almost completely depleted.

4.3 Congestion Control Behavior
The purpose of these set of experiments was to investi-

gate the congestion control behavior of the algorithms. The
node’s speed was chosen in the range 1-20 m/s and the
packet send rate was gradually increased from 10 packets/s
to 100 packets/s and the other parameters remain the same
as in the previous experiments. All algorithms are able to
cope up with an increased load (see Figure 6(a)), however,
the performance of AODV is the worst. The throughput of
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Figure 5: Effect of varying the speed of the nodes

Node Mobility BeeAdHoc DSR AODV DSDV
1-5 m/s 6.2 1.4 1.8 2.4
1-10 m/s 5.5 1.3 2.4 2.6
1-15 m/s 6.1 1.0 1.6 2.6
1-20 m/s 11.4 1.1 1.4 3.3

Table 3: Effect of varying speed on Network life

the algorithms increased with an increase in the send rate
of packets (see Figure 6(c)). No significant queue delays
were experienced even with a sending rate of 100 packets/s,
as a result, y bits took approximately the same time t as
in the previous experiments. According to our definition
of throughput (see Section 4.1), it should approximately re-
main the same even though ten time more packets are deliv-
ered at the destinations. BeeAdHoc has the highest through-
put value, because it provides a good compromise between
packet delivery ratio and packet delay.
Figure 6(b) shows that the packet delay decreases with an
increase in the load, which at first, appears to be counter in-
tuitive. But this could be easily explained by looking at the
definition of packet delay (see Section 4.1). The route dis-
covery time, which is an overhead of discovering new routes,
is now shared by more data packets. The energy expenditure
of the algorithms also decrease with an increase in the send
rate of packets because more data packets are delivered at
their destination with the same number of control packets.
However, BeeAdHoc has the lowest energy expenditure.

4.4 Varying Pause Time
Another challenge in MANETS is to study the effect of

pause time on the performance of the algorithms. Smaller
pause time means that the nodes will stop for smaller times
and as a result, the routes will never be stable. In these ex-
periments we kept the maximum speed at 20 m/s and packet
rate at 100 packets/s and all other parameters remained the
same as in the previous experiments. We show the results
for 1, 30 and 60 seconds of pause time, because according to
the authors of [1] any increase in pause time after 60 seconds
just improves the performance of the algorithms. Figure 7
shows the results for these experiments. Packet delivery ra-
tio for BeeAdHoc, DSR and DSDV remains approximately
the same with a decrease in pause time, however, the AODV
delivers about 2% less packets at a pause time of 1 sec as
compared to a pause time of 60 seconds. The significant
degradation in packet delay is experienced by all of the al-
gorithms with a decrease in the pause time; DSR being the
worst effected. All of the algorithms show an increase in the
range of 300% to 600% in the delay. One could see from
Figure 7(b) that AODV has the smallest delay but then it
delivers less packets as well (see Figure 7(a)). The routes
are unstable at small pause times, as a result, packets, both
on the average and in worst case scenarios, take more time
to reach their destination. Consequently, throughput metric
suffers as well (see Figure 7(c)) but BeeAdHoc manages to
maintain higher throughput in all of the scenarios.
Energy expenditure of BeeAdHoc, as expected, is the lowest
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Figure 6: Effect of varying packet send rates

among all algorithms in all of the scenarios. The reason is
twofold: one, smaller number of control packets sent, and
two, delivering more packets with smaller number of hops.

5. CONCLUSION
In this paper we presented a new routing algorithm for

MANET which is inspired by the honey bee behavior. The
algorithm is simple and mainly needs two types of messages
for routing: scouts, which on-demand discover new routes
to the destinations and forgers, which transport data pack-
ets and simultaneously evaluate the quality of the discov-
ered routes. This simplicity results in substantially smaller
number of control packets sent, as a result, the algorithm is
energy efficient. We have verified through extensive simu-
lations, which represent a wide spectrum of network condi-
tions, that BeeAdHoc delivers the same/better performance
as that of the state-of-the-art algorithms but at a signifi-
cantly smaller energy expenditure.
We have already started our research in implementing BeeAd-
Hoc in the network stack of the Linux kernel. We will then
test and evaluate the algorithm on a mobile network of lap-
tops. This effort is part of our Natural Engineering approach
in which we want to develop engineering solutions for the
real world problems under the resources of constraints (cost,
labor, time etc.). We are also modifying BeeAdHoc so that it
could scale to at least 1000 nodes MANETs. These enhance-
ments will be the subject of our forthcoming publications.

Contact information. The email addresses of the authors
are (wedde, farooq)@ls3.cs.uni-dortmund.de,
thorsten.pannenbaecker@uni-dortmund.de,
bjoernvogel@gmx.de, christian.mueller@uni-dortmund.de,
J.Meth@LANdata.de and jeruschkat@web.de respectively.
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